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4 INFM Dipartimento di Fisica, Università di Cagliari, S.P. Monserrato-Sestu Km 0.700, 09042 Monserrato (CA), Italy

Received 16 November 2001 and Received in final form 21 December 2001

Abstract. We report measurements of the resistivity, ρ, and the Seebeck coefficient, S, of a MgB2 sintered
sample, and compare S with theoretical calculations based on precise electronic structure calculations. ρ is
fitted well by a generalized Bloch-Grüneisen equation with a Debye temperature ΘR of 1050 K. S is given by
the sum of a diffusive and a phonon drag term and the behavior in the temperature region Tc < T < 0.1ΘR
follows the relationship AT +BT 3. The phonon drag term indicates a strong electron-phonon interaction.
The diffusive term, compared with calculations, suggests that σ bands give the main contribution to the
Seebeck effect.

PACS. 74.25.Fy Transport properties (electric and thermal conductivity, thermoelectric effects, etc.) –
72.15.Jf Thermoelectric and thermomagnetic effects – 74.70.Ad Metals; alloys and binary compounds
(including A15, Laves phases, etc.)

The discovery of 40 K superconductivity in MgB2 [1] has
stimulated a large discussion on the nature of the pairing
and many evidences suggest a BCS-type mechanism: the
isotope effect on Tc [2], energy gap [3] and specific heat
measurements [4] and a negative pressure coefficient of
Tc [5,6].

Electron transport properties may give insight into the
normal state conduction process, on the electronic struc-
ture and on the electron-phonon interaction. From this
point of view, the MgB2 behaves like a simple metal; in
fact the resistivity is described by Bloch-Grüneisen equa-
tion [7,8], the magnetoresistivity follows a generalized
Kohler’s rule [9,7] and the Seebeck effect [5,6,10–12] is
small, positive and nearly linear. In the picture of simple
metal the Seebeck effect was analyzed considering only a
diffusive term linear with temperature, but the extrapo-
lation of this term to zero temperature yields an unphys-
ical non-vanishing negative value. This inconsistency can
be eliminated taking a phonon drag term into account as
suggested in reference [13]; this contribution, moreover, is
expected to be remarkable in a metal with strong electron-
phonon coupling.

In this paper we analyze the thermopower (TEP) mea-
surements as the sum of a diffusive and a phonon drag
terms and we show that our data, as well as data from
literature, are compatible with a phonon drag term of the
expected order of magnitude. The linear diffusive term,
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vanishing with temperature, is then compared with a cal-
culation that we perform based on the precise electronic
structure.

We present resistivity and TEP measurements on a
sintered MgB2 sample. The compound MgB2 was pre-
pared by direct synthesis from the elements: Mg and crys-
talline B were well mixed together and closed by arc
welding under pure argon into outgassed Ta crucibles
which were then sealed in quartz ampoules under vac-
uum. The samples were slowly heated up to 950 ◦C and
maintained at this temperature for 1 day. X-ray diffrac-
tion shows values of the lattice parameters, a = 3.087(1),
c = 3.526(1) Å, and the absence of extra reflections. The
specimen for transport measurements has been prepared
by pressing the powders in a stainless-steel die into a pel-
let which was then sintered by heat treatment at 1000 ◦C
for 2 days.

The resistivity measurements were performed using a
standard four probe technique and the TEP was measured
using an a.c. technique described elsewhere [14] with sensi-
tivity of 0.5% and accuracy of 1.5%. The gradient applied
to the sample was varied from 1 to 3 K/cm and the fre-
quency from 0.003 to 0.008 Hz; the data were acquired
with a slowly rising temperature (1 mK/sec).

The resistivity measurements are presented in Figure 1
up to 300 K; the transition region is enlarged in the inset.
The critical temperature defined at half of the transition
is Tc = 38 K with amplitude ∆Tc ∼ 0.3 K. The residual
resistivity ratio (RRR = ρ(300 K)/ρ(40 K)) is 3, whereas
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Fig. 1. ρ as a function of temperature; the transition region
is enlarged in the inset. The best fitting curve is reported as a
continuous line.

the resistivity at T = 40 K is 40 µΩcm. The critical tem-
perature somehow lower than the maximum value for this
compound could be related to non perfect stoichiometry
of Mg in the sintered sample, as suggested in reference [7].
In this framework, we can explain the rather large resid-
ual resistivity in terms of scattering with the Mg vacancies
as well as with the grain boundaries [15]. Anyway, refer-
ence [7] concludes that also in non perfect stoichiometry
sintered samples the resistivity temperature dependence
may be considered as basically intrinsic, independent on
granularity. Thus we fit the temperature dependence of
the normal state resistivity to the expression:

ρ(T ) = ρ0 + ρph(T ), (1)

where ρ0 is the temperature-independent residual resis-
tivity and ρph(T ) the phonon-scattering contribution as-
sumed of the generalized Bloch-Grüneisen form:

ρph(T ) = (m− 1)ρ′ΘR

(
T

ΘR

)m ΘR/T∫
0

zmdz
(1− e−z)(ez − 1)

,

(2)

where ΘR is the Debye temperature, ρ′ is the temperature
coefficient of resistivity for T � ΘR and m = 3−5. Equa-
tion (2) reduces to ρ(T ) = ρ0 + const.× Tm for T � ΘR;
indeed from 40 to 100 K the resistivity is well fitted by
a power law with m = 2.9 − 3.4 [7–9], while lower m
values are found when the fit is extended up to room tem-
perature. The best fit of equations (1–2) to our data is
obtained with m = 3, ρ0 = 39.7 µΩcm, ΘR = 1050 K,
ρ′ = 0.49 µΩcm/K and is shown in Figure 1 as a con-
tinuous line. The ΘR value is in fair agreement with ΘD

obtained from heat capacity measurements [16] although
lower values (700− 900 K) have also been reported [4]. ρ′
which is proportional to the dimensionless λtr coupling co-
efficient, has the same value that in A15 compounds [17],
consistent with a moderately strong coupling.
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Fig. 2. S as a function of temperature; the continuous line
is given by equation (6) with A = 1.76 × 10−2 µV/K2 and
B = 1.26 × 10−6 µV/K4; the dashed line is Sd = AT ; the
dotted line is S−Sd. In the inset it is shown S/T as a function
of T 2; the continuous line is the best fit performed in the range
2000 K2 < T 2 < 8000 K2.

The TEP measurements are shown in Figure 2, where
we see the transition around 38 K and a continuous in-
crease, with curvature changing from positive to nega-
tive above 150 K. In contrast to resistivity, whose values
and temperature dependence are strongly influenced by
sample structural quality, TEP measurements seem to be
less affected by disorder or granularity, as well proved in
cuprates [18]. Indeed, all the data reported in literature
show always almost identical behaviors. Looking to TEP
data in more details, a difference among TEP measure-
ments, is in the temperature dependence below 100 K.
While in many references TEP measurements show a lin-
ear behavior below 100 K, in some other papers [5,12] as
well as our data, they show instead a light positive curva-
ture. This curvature will be discussed in the following.

The observed temperature behavior can be analyzed
considering first the diffusive contribution to S given by
the Mott formula:

Sd =
π2

3
K2

BT

e

σ′

σ
, (3)

where e is electronic charge, σ is the electrical conductivity
and σ′ = ∂

∂εσ(ε) |εF . Note that εF must be counted up-
ward for electrons and downward for holes. In the isotropic
case and if the relaxation time τ is independent of en-
ergy (this is the case for scattering with grain boundaries),
σ′/σ = 3/2εF, independent of the scattering processes and
equation (3) becomes:

Sd =
π2

2e
K2

BT

εF
· (4)

Second, we must consider a phonon drag term Sg, arising
for temperatures lower than the Debye temperature, when
the phonon relaxation time for interaction with other
phonons and impurities is much longer than the relaxation
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Table 1. The coefficients A and B obtained by fitting S/T vs. T 2 (Eq. (6)); ΘD as obtained by equation (8); εF as obtained
by equation (7).

A (µV/K2) B (µV/K4) ΘD (K) εF (eV)

MgB2 1.76 × 10−2 1.26× 10−6 1430 2.1
MgB2 [5] 1.70 × 10−2 1.30× 10−6 1430 2.2

MgB2 [10,13] 2.00 × 10−2 1.30× 10−6 1430 1.8
Mg0.95Al0.05B2 [10,13] 2.88 × 10−2 1.41× 10−6 1390 1.3
Mg0.9Al0.1B2 [10,13] 2.99 × 10−2 1.49× 10−6 1360 1.2

time for phonon-electron interactions. For pure isotropic
metals and considering only electron-phonon normal pro-
cesses, an upper bound for Sg can be roughly estimated
to be given [19]

Sg =
Cph

3ne
, (5)

where Cph is the phonon specific heat per unit volume.
Thus, for T � ΘD , and assuming Sg to really reach this
upper bound, the total TEP S will take the form:

S = Sd + Sg = AT +BT 3, (6)

where:

A =
π2K2

B

2e
1
εF

(7)

B =
β3

3ne
=
KB

e

1
na

4π4

5
1
Θ3

D

· (8)

Here β3 = 9NKB
Θ3

D
is the coefficient of the low tempera-

ture phonon specific heat, N is the number of atoms per
unit volume, and na is the number of valence electrons.
Equation (6) can be compared with the experimental TEP
of MgB2 in the temperature range TC < T < 0.1ΘD ∼
100 K showing a good overlap with a large part of our
measurements.

The inset of Figure 2 shows the ratio S/T as a func-
tion of T 2 for 40 K < T < 100 K. The data show a lin-
ear behavior up to a T 2 value of 8000 (T = 90 K) and
then begin to bend. The best fit performed in the range
2000 K2 < T 2 < 8000 K2 is plotted as a continuous line
and the fit parameters are A = 1.76 × 10−2 µV/K2 and
B = 1.26× 10−6 µV/K4.

In Figure 2 equation (6) with A and B given by the
fit is plotted as a continuous line, while the diffusive term
Sd = AT is plotted as a dashed line. The experimental
curve is well fitted by equation (6) up to 100 K, above
which the data change curvature and tend to increase lin-
early, with nearly the same slope of Sd. The experimental
phonon drag term defined as S − Sd, plotted as a dot-
ted line, tends to saturate above 250 K. This is exactly
what it is expected for Sg; in fact, increasing the tem-
perature, phonon-impurity and phonon-phonon processes
become more important, and the phonon drag falls, caus-
ing a peak in the TEP. In metals as Cu, Ag, Au, Al, the
phonon drag peak occurs at about ΘD/5 [19], while in our
case the peak is not yet reached at ΘD/4 giving a fur-
ther evidence of the importance of the electron-phonon
coupling in MgB2.

We therefore find that the diffusive and phonon drag
terms contribute nearly equally to the TEP. The previous
reports [5,6,10,12] and [13] which consider only a diffusive
term non-vanishing with temperature, can be analyzed
taking also a phonon drag contribution into account. We
fitted the data of references [5,10,13] to the equation (6)
and we found coefficients A and B, summarized in Ta-
ble 1, in good agreement with those obtained with our
data. The main difference among samples is the temper-
ature range in which the T 3 behavior extends; this range
is wider in our data and in data of reference [5] where a
positive curvature below 100 K is evident.

To further verify the consistency of the model, let us
try now to relate the coefficient A and B with some mi-
croscopic parameters. We first start neglecting the multi-
band character of MgB2 and we pursue in our naive model
of isotropic free electrons. Its reliability will be discussed
afterwards in the light of the band structure effects.

The coefficients A and B of our sample, and those
extrapolated from data in literature for pure [5] and Al
doped MgB2 [10,13], are summarized in Table 1. The
Fermi energy εF and the Debye temperature ΘD are ob-
tained directly from A and B (Eqs. (7, 8)): ΘD ∼ 1400 K,
is in good agreement with ΘR (only the 30% higher) con-
sidering that equation (5) is an overestimation of Sg; εF

for pure MgB2 is of the order of 2 eV and becomes 1.2 eV
for Al doped samples: since the Al doping raises the Fermi
level, the decreasing of εF with Al doping is a further ev-
idence (in addition to the positive sign) that Sd is domi-
nated by holes.

Let us now turn to the TEP as resulting from the
band structure of MgB2. Two types of bands contribute
to the conduction [20,21]: two σ bands, deriving from the
px,y states of B and two π bands deriving from the pz
states with very different dimensional character, the σ
bands being of hole-type and nearly 2D, and the 3D π
bands mainly of electron-type. Great relevance in the
discussion of the pairing mechanism has been given
to the σ bands [21], and the positive sign of the Hall
coefficient and of the TEP, as well as the increasing of
the latter with Al doping, confirm the importance of
these bands in the transport properties. Starting from
the precise electronic structure calculations described
in reference [20], we have computed the Seebeck tensor
Sd, as a function of the chemical potential shift, to
reproduce within a rigid band scheme the Al dop-
ing. These calculations are performed using the scheme
described, e.g., in references [20,22]. Because of hexagonal
symmetry, the independent components are Sxx = Syy
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Fig. 3. Sd/T as a function of doping, estimated in a rigid
band scheme from the integrated DOS. (a) Tensor components
and average; (b) Average Sd/T and its band decomposition, as
explained in the text.

and Szz. Briefly, if Ω is the unit cell volume and vi(k, n)
are the cartesian components of the Fermi velocities for
the nth band, we obtain the TEP components Sii as:

Sii(T ) =
KB

e

∫
dε (ε−µ)

KBT
σii(ε)

(
−df

dε

)
∫

dεσii(ε)
(
−df

dε

) (9)

where

σij(ε) =
e2

Ω

∑
k,n

vi(k, n)vj(k, n)τ(k, n)δ(ε(k, n) − ε).

(10)

If we consider τ to be isotropic and independent of
energy, it will not affect the final result. As pointed
out in reference [22], Sii vanishes in the approximation
−df

dε = δ(ε− µ), and it would therefore be appropriate to
include the energy dependence of τ as well. Unfortunately,
it is not easy to obtain a consistent τ(ε) approximation,
and we therefore use the most conservative, τ = const.,
approach. As it is important to assess the functional de-
pendence of S on T , however, we checked a different form
of τ(ε), in particular τ(ε) proportional to 1/N(ε) as sug-
gested by [22]. The numerical values of Sd change, but it
results linear with temperature in the range of interest.

Sd shows the expected linear behavior as a function of
temperature, and we therefore plot in Figure 3 Sd/T , as
a function of the electron doping, in a rigid band scheme.

Figure 3a gives the tensor components, while to compare
with experiment we show in Figure 3b the average of Sd/T
over directions, Sd/T . Since both numerator and denom-
inator in the definition of Sd/T contain a band summa-
tion, there is no clear cut distinction between the σ and
π contributions. With this warning, in order to better un-
derstand our results, we decompose in Figure 3b Sd/T in
terms of σ and π bands contributions (i.e. we decompose
the numerator of Eq. (9)). We notice that for small val-
ues of doping the dominant, positive contribution comes
from σ bands; when the chemical potential goes beyond
the maximum energy of the σ-bonding band the A point
(k = (0, 0, πc ) this contribution disappears and the result-
ing Sd/T is much smaller and negative, identical to the
π contribution. The smallness of the latter relative to the
σ contribution can be easily understood: the numerator
of equation (9) essentially monitors the σii(ε) derivative
with respect to ε, and this quantity is much larger for
the σ bands. As a function of the doping x, Sd/T initially
grows, and then it bends down, especially because of the σ
contribution when µ goes beyond the 2D to 3D crossover
(position of the σ band at Γ ), but also because of the π
contribution change.

The calculated values are smaller, by a factor of
about 1.7–2, than the experimental values of Table 1. The
trend as a function of doping, however, is similar in exper-
iment and theory; it would be interesting, in this respect,
to obtain the experimental values for larger doping. While
the agreement between the bare band theory value and
experiment is not quantitatively good, it may considered
to be satisfactory based on the following considerations:
(i) our calculations do not include the energy dependence
of τ , which may result into quantitative differences [22].
As a speculation, we may say the following: our under-
standing of MgB2 indicates a strong electron-phonon cou-
pling for the σ band top (mostly with the E2g phonon
mode). Very likely, such a strong coupling will depend on
the energy location, relative to the σ band top, resulting
into an energy dependent τ(ε). (ii) Also, our calculations
do not contain any form of renormalization; it has been
a controversial question, in the literature [23], whether
renormalization should affect the bare band-structure re-
sults. If this would be the case, the strong electron-phonon
coupling in MgB2 would bring the theoretical value into
agreement with experiment. Undoubtedly, the presence of
contributions to TEP from different bands, having differ-
ent electron-phonon couplings, should prevent any com-
plete cancellation of renormalization effects in the final
result.

In summary, we showed that resistivity and TEP in the
normal state can described within an independent electron
framework, by taking into account the high phonon fre-
quencies and the strong electron-phonon coupling. In par-
ticular the TEP is the sum of a diffusive and a phonon drag
terms which contribute nearly equally to it. The phonon
drag term was not previously recognized, in fact its peak
is shifted above room temperature by the high Debye tem-
perature and the strong electron-phonon interaction. The
diffusive term is positive and increases with Al doping.
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The comparison of the experimental values with the the-
oretical ones, obtained from the precise electronic struc-
ture, suggests that bands give the main contribution to
the TEP. Further investigation will be necessary to verify
this result; in particular transport properties on samples
with higher level of Al doping will be a useful tool to bet-
ter investigate the role of the σ bands, whose relevance in
the pairing mechanism has been strongly advocated.

This work was partially supported by the Italian Consiglio
Nazionale delle Ricerche (CNR) through the “Progetto 5% Ap-
plicazioni della superconduttività ad alta Tc”.
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